Written Methods

Written Methods

4a. Which of the methods below would be the most efficient way of solving the given calculation?

$$
\begin{array}{llll}
n ? & \\
43 & x & 4 & =\square \\
\hline
\end{array}
$$

10101010	1	1
10101010	1	1
10101010	1	1
101010	10	1
43×4	1	
3×4		

Use it to solve the calculation.
5a. Using the digit cards, create a calculation.

Use the most efficient method to solve it.
You could use a part-whole model, a place value grid or a number line.

6a. Julie is solving 42×6.

She thinks the answer is 36 .
Is she correct? Convince me!

4b. Which of the methods below would be the most efficient way of solving the given calculation?

$$
26
$$

10	10	1	1	1	1	1	1
10	10	1	1	1	1	1	1
10	10	1	1	1	1	1	1
10	10	1	1	1	1	1	1
10	10	1	1	1	1	1	1
10	10	1	1	1	1	1	1

Use it to solve the calculation.
5b. Using the digit cards, create a calculation.

Use the most efficient method to solve it. You could use a part-whole model, a place value grid or a number line.

6b. Martin is solving 37×4.

He thinks the answer is 128.
Is he correct? Convince me!

